Robust Duality for Generalized Convex Programming Problems under Data Uncertainty∗
نویسندگان
چکیده
In this paper we present a robust duality theory for generalized convex programming problems in the face of data uncertainty within the framework of robust optimization. We establish robust strong duality for an uncertain nonlinear programming primal problem and its uncertain Lagrangian dual by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. A robust strong duality theorem is given whenever the Lagrangian function is convex. We provide classes of uncertain non-convex programming problems for which robust strong duality holds under a constraint qualification. In particular, we show that robust strong duality is guaranteed for non-convex quadratic programming problems with a single quadratic constraint with the spectral norm uncertainty under a generalized Slater condition. Numerical examples are given to illustrate the nature of robust duality for uncertain nonlinear programming problems. We further show that robust duality continues to hold under weakened convexity condition.
منابع مشابه
Robust linear semi-infinite programming duality under uncertainty
In this paper, we propose a duality theory for semi-infinite linear programming problems under uncertainty in the constraint functions, the objective function, or both, within the framework of robust optimization. We present robust duality by establishing strong duality between the robust counterpart of an uncertain semi-infinite linear program and the optimistic counterpart of its uncertain La...
متن کاملSome Robust Convex Programs without a Duality Gap∗
In this paper, we examine the duality gap between the robust counterpart of a primal uncertain convex optimization problem and the optimistic counterpart of its uncertain Lagrangian dual and identify the classes of uncertain problems which do not have a duality gap. The absence of a duality gap (or equivalently zero duality gap) means that the primal worst value equals the dual best value. We f...
متن کاملStrong Duality in Robust Convex Programming: Complete Characterizations
Abstract. Duality theory has played a key role in convex programming in the absence of data uncertainty. In this paper, we present a duality theory for convex programming problems in the face of data uncertainty via robust optimization. We characterize strong duality between the robust counterpart of an uncertain convex program and the optimistic counterpart of its uncertain Lagrangian dual. We...
متن کاملRobust Conjugate Duality for Convex Optimization under Uncertainty with Application to Data Classification∗
In this paper we present a robust conjugate duality theory for convex programming problems in the face of data uncertainty within the framework of robust optimization, extending the powerful conjugate duality technique. We first establish robust strong duality between an uncertain primal parameterized convex programming model problem and its uncertain conjugate dual by proving strong duality be...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کامل